Skip to content
www.H-U-M-A-N-O-I-D.com

The most valuable Humanoid domain name in the world

THIS DOMAIN IS FOR SALE

WORLDWIDE THIS IS THE MOST SOUGHT AFTER DOMAIN IN THE INDUSTRY

Primary Menu
  • About us
  • Privacy Policy
Humanoid Shop coming soon
  • Home
  • 2025
  • December
  • 24
  • Sculpting Sand with Robots: A Breakthrough in Reinforcement Learning
  • Humanoids and AI

Sculpting Sand with Robots: A Breakthrough in Reinforcement Learning

The humans behind H-u-m-a-n-o-i-d.com December 24, 2025 2 min read
Sculpting Sand with Robots: A Breakthrough in Reinforcement Learning

Researchers at the University of Bonn have developed a groundbreaking reinforcement learning framework, as detailed in a study published on arXiv. This framework enables robots to manipulate granular media like sand to achieve specific shapes. The system involves training a robotic arm with a cubic end-effector and a stereo camera to reshape loose material into various forms, including rectangles, L-shapes, polygons, and even negatives of archaeological fresco fragments.

The key innovation lies in the system’s ability to achieve millimeter-level accuracy, surpassing two baseline approaches. The trained agent successfully transferred from simulation to a physical robot without the need for additional training, showcasing its efficiency and effectiveness. Granular materials present challenges due to their high-dimensional configuration space and unstable dynamics, making traditional rule-based approaches inadequate. Additionally, particle simulations can be computationally intensive.

To overcome these obstacles, the researchers optimized compact observation spaces and reward functions to guide the learning process. They utilized Truncated Quantile Critics (TQC), an off-policy reinforcement learning algorithm, to train visual policies. Depth images captured by a ZED 2i stereo camera were converted into height maps, facilitating the robot’s comparison of current and desired structures for efficient training.

In the evaluation against a random policy and a Boustrophedon Coverage Path Planning baseline, the learned agent consistently outperformed both methods across 400 goal shapes. By employing the delta reward (DELTA) formulation, the robot achieved a mean height difference of 3.4 millimeters, surpassing the planning method and random motion strategies. Notably, the agent modified 97 percent of the relevant cells in the goal area, demonstrating its precision and effectiveness.

The project, a collaboration between the Humanoid Robots Lab, the Autonomous Intelligent Systems Lab, and the Center for Robotics at the University of Bonn, received funding from the European Commission and Germany’s Federal Ministry of Education and Research. Further experiments examined various design choices, emphasizing the efficacy of the proposed framework in adapting to real-world scenarios.

The researchers concluded that their method consistently outperforms traditional baselines, offering a promising approach for adaptive robotic manipulation of deformable materials. This study showcases the potential of reinforcement learning in shaping granular media without the need for predefined rules. The research opens new possibilities for applications in excavation, grading, and extraterrestrial soil handling.

The team’s success in transferring skills from synthetic training environments to real-world applications underscores the robustness of their framework. The study provides valuable insights into the automation of tasks involving granular materials and highlights the transformative potential of reinforcement learning in robotics.

About the Author

The humans behind H-u-m-a-n-o-i-d.com

Author

Visit Website View All Posts

Post navigation

Previous: Transforming Robotics: Robots Enhance Skills with Vision-Based Reinforcement Learning
Next: AgiBot Leads the Innovation in AI-Powered Robots for Chinese Factories

Related News

Future of Household Robots Explored at CES 2026
2 min read
  • Humanoids and AI

Future of Household Robots Explored at CES 2026

The humans behind H-u-m-a-n-o-i-d.com January 9, 2026 0
At CES 2026, PaXini Unveils Strategy for Embodied Intelligence through Full-Stack Approach
3 min read
  • Humanoids and AI

At CES 2026, PaXini Unveils Strategy for Embodied Intelligence through Full-Stack Approach

The humans behind H-u-m-a-n-o-i-d.com January 9, 2026 0
AI-Powered Humanoid Robots: Transitioning from Labs to Factories
2 min read
  • Humanoids and AI

AI-Powered Humanoid Robots: Transitioning from Labs to Factories

The humans behind H-u-m-a-n-o-i-d.com January 8, 2026 0

Recent Posts

  • Chinese Companies Dominate Global Human-Like Robot Market
  • Revolutionary Artificial Skin Enhances Robotic Sensitivity for Human-like Touch
  • Developing Emotional and Multilingual Capabilities in Social Robots
  • Robots as Social Influencers: Exploring Human-Robot Interactions
  • Social Robots Market Growth Expected to Reach USD 1.10 Billion by 2025

Recent Comments

No comments to show.

Archives

  • January 2026
  • December 2025

Categories

  • General
  • Humanoid Robots
  • Humanoids and AI
  • Humanoids and Humans
  • Humanoids Development
  • Humanoids for Sale
  • Uncategorized

You may have missed

Chinese Companies Dominate Global Human-Like Robot Market
1 min read
  • Humanoids for Sale

Chinese Companies Dominate Global Human-Like Robot Market

The humans behind H-u-m-a-n-o-i-d.com January 13, 2026 0
Revolutionary Artificial Skin Enhances Robotic Sensitivity for Human-like Touch
2 min read
  • Humanoids Development

Revolutionary Artificial Skin Enhances Robotic Sensitivity for Human-like Touch

The humans behind H-u-m-a-n-o-i-d.com January 13, 2026 0
Developing Emotional and Multilingual Capabilities in Social Robots
2 min read
  • Humanoids Development

Developing Emotional and Multilingual Capabilities in Social Robots

The humans behind H-u-m-a-n-o-i-d.com January 12, 2026 0
Robots as Social Influencers: Exploring Human-Robot Interactions
2 min read
  • Humanoids and Humans

Robots as Social Influencers: Exploring Human-Robot Interactions

The humans behind H-u-m-a-n-o-i-d.com January 12, 2026 0